Монополизация машинного обучения

Появление монополий почти всегда идёт во вред, но до всеобъемлющей цифровизации у людей оставались варианты защиты от шантажа отбором товаров или услуг.

С переводом жизни в цифру, средств защиты остаётся всё меньше, отказ от цифровых услуг откатывает уровень жизни на неприемлемые для большинства позиции.

До расцвета машинного обучения проблема IT монополий с трудом, но решалась созданием альтернативного ПО. Его авторами могли выступать как небольшие предприятия, так и сообщества энтузиастов, ратующие за свободное и открытое ПО

Сначала альтернативный софт можно было создавать в одиночку. Затем группами всё большего размера. 

Стоимость разработки росла, но альтернативы продолжали появляться, поскольку основная стоимость производства ПО определялась оплатой труда разработчиков. Люди всегда могут затянуть пояса ради идеи или будущего дохода.

Machine Learning, в его текущем виде, меняет расклад.

Читать далее

Feature Programming

Эссе по итогам нырка в Deep Learning, но не о DL и даже не совсем о Machine Learning, а о новой парадигме программирования, которая рождается из него. 

Собственно, нейронные сети я смотрел не потому, что интересуюсь именно ими, а потому что они сейчас демонстрируют наибольший прогресс и характерные черты этой парадигмы.

В следствие выбранной темы, эссе получилось футурологическим и абстрактным. Например, я не буду перечислять области применения DL и достигнутые в них результаты — этим итак всё инфопространство забито.

Оговорка раз: я определённо не эксперт в машинном обучении. Эссе в большей степени отражает мой опыт и картину мира, нежели знания и понимание ML и DL.

Оговорка два: термины «признак», «feature» будут использоваться достаточно вольно.

Читать далее

Реализация Generative Adversarial Network

В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.

По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.

Ноутбук с реализацией GAN и комментариями.

Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.

Краткая суть:

  • Тренируются две сети: generator & discriminator.
  • Генератор учится создавать картинки из шума.
  • Дискриминатор учится отличать поддельные картинки от настоящих.
  • Ошибка дискриминатора определяется качеством предсказания фейковости изображения.
  • Ошибка генератора определяется качеством обмана дискриминатора.

Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.

Ссылки на курсы по Machine Learning & Deep Learning

Перед началом разбирательства с темой собрал для себя список курсов, которые могут быть интересны.

Публикую, чтобы не пропадал зря.

Только ссылки. Свои комментарии вырезал — в исходном виде они никому кроме меня не помогут :-)

Читать далее

Kaggle: Digit Recognizer (MNIST) точность 0.99585

Продолжаю путешествие по занимательным землям Deep Learning.

В прошлый раз я учился заводить deep learning на локальной машине и делал совсем детскую, искусственную и неспецифическую для DL задачу.

В этот раз решил попробовать что-то более диплёрничное — научиться решать задачи на Kaggle. Есть предположение, что Kaggle — самый простой и интересный способ учить DL.

На этом сервисе есть задачи для новичков, одну такую — Digit Recognizer — я выбрал для тренировки. Соревнование по распознаванию рукописных цифр из набора MNIST. Этот набор должны были встречать даже люди далёкие от ML.

Notebook с решением и комментариями опубликован на github. 

На момент отправки решение занимало 467 место из ~7000. На мой взгляд неплохой результат, учитывая, что первые мест 150 занимают читерские решения. MNIST — общедоступный набор данных, их можно скачать вне kaggle и залить в качестве решения готовые ответы, или переобучить сеть на полном наборе.

Читать далее