DALL-E: «Wrubel painting: silly predictions about artificial intelligence»
Пару месяцев назад начал делать заметки на тему поста с намерением не спеша накопить к лету и опубликовать. А тут некоторые прогнозы сбываться начинают :-D Поэтому закину что есть, без сроков и гарантий.
DALL-E: «Vrubel style painting of pair programming Robot + Human. An robot is writing code, a human is reviewing code».
Последние несколько недель использовал GitHub Сopilot, благо для Emacs есть плагин. Поделюсь впечатлениями.
Для справки, я уже лет 15 осознанно не использовал умное автодополнение. Всё моё автодополнение — это DynamicAbbreviations, по сути — дополнение написанного слова на основе словаря из открытых исходников.
Причина отказа такая: используя «умное» автодополнение (например, подсказку аттрибутов/методов объекта) перестаёшь понимать проект. Начинаешь на автомате брать предлагаемые варианты методов/переменных, не разбираясь что они конкретно делают и есть ли альтернатинвые варианты.
В краткосрочной перспективе отказ от автодополнения повышает нагрузку на человека (особенно на память) и замедляет работу, но в доглосрочной даёт глубокое понимание проекта, возможнсоть крутить его в голове как угодно, что с лихвой окупает потери на скорости в моменте. А поскольку я работаю только над долгими проектами, долгосрочная выгода важнее.
С Copilot я, похоже, вернуcь к умному автодополнению, в его более правильном варианте.
Итак, давайте посмотрим чего умеет и не умеет Copilot.
Я уже публиковал концепт документы игр. В этот раз будет не концепт, a скорее white paper игр нового поджанра. Несколько его представителей уже есть, со временем их будет становиться больше.
В WYOA игрок не ограничен небольшим количеством предопределённых вариантов действий, как приходится делать в CYOA из-за сложности поддержки дерева сюжета. Количество выборов будет либо очень большим либо бесконечным. Благодаря нейронным сетям, конечно, но о них позже.
Для протокола скажу пару слов о Non Fungible Tokens. В основном потому, что о них сейчас кричат из каждого утюга. Может для кого-нибудь этот пост будет полезен.
Некоторые вещи буду говорить упрощённо, чтобы не затягивать.
Справедливости ради отмечу, что «игра» откровенно убогая. Но процесс создания впечатляет всё равно.
Одновременно с этим роботы занимаются паркуром, автомобили ездят без водителя, маркетинговые алгоритмы и ленты социальных сетей во всю управляют нашим поведением и даже мыслями.
Время поговорить о замене нас железными мозгами перспективах машинного обучения в его текущем виде.
Для краткости, вместо машинного обучения, нейронных сетей, feature programming и аналогичных вещей далее буду использовать аббревиатуру ИИ — Искусственный Интеллект. Кто знает на какой конкретно технологии всё остановится, но для её пиара гарантировано будут использовать затычку из двух «И».
Эссе включает:
Оценку возможности прогнозирования.
Описание факторов, которые влияют на развитие и внедрение ИИ.
Три классических прогноза: пессимистичный, реалистичный и оптимистичный.
В первой и второй частях я уверен, а вот в прогнозах у меня получается жутковатая картина. В то же время основной проблемой прогнозов я считаю оценку сроков, а не качественных изменений.