Архив метки: Нейронные Сети

Будущее контента в геймдеве

Появилась новая работа по улучшению графики игр с помощью нейронных сетей. На этот раз на примере GTA V. В ролике можно посмотреть на полученный результат и на описание структуры сети. 

Я уже в шутку писал об изменении pipeline арта. В этот раз сделаю более серьёзный прогноз.

Читать далее

Больше новостей о процедурной генерации

На этот раз Open AI рассказали о новой нейронке (на русском) а-ля GPT-3, но для изображений. Пример её работы можно видеть на заглавной картинке. Изображения сформированы для фразы «A capybara made of voxels sitting in a field» (капибара из вокселей, которая сидит в поле).

На странице с анонсом можно посмотреть другие примеры работ, включая разные способы изображения (3D рендер, изометрию, низкополигональные модели, etc). 

Результаты, конечно, кривоваты. Но, надо учесть два нюанса:

  • Это первый подход к подобной архитектуре с подобными деньгами.
  • Это сеть общего назначения, не натасканная на геймдев.

А вот если бы её допилить, специализировать на фэнтези, да подключить к Сказке… Но у меня столько денег нет :-) А у кого-нибудь обязательно найдутся.

Постепенно вырисовывается новый пайплайн для арта:

  • нейронка для постановки задания;
  • нейронка для генерации контента;
  • нейронка для устранения неточностей на картинке;
  • нейронка для стилизации;
  • нейронка для вылизывания;
  • нейронка для выделения 3D меша;
  • нейронка для оптимизации меша;
  • нейронка для анимации;

Интеграция контента, позиционирование камер, цвет, свет, звук и прочее — тоже нейронки. Ну вы поняли :-D

Товарищи, которые научатся делать эти лопаты, сорвут большой куш.

Математики добрались до нейронных сетей

На arxiv.org выложен интересный препринт: Every Model Learned by Gradient Descent Is Approximately a Kernel Machine.

Как видно из названия, исследователи утверждают, что нейронные сети, обученные методом градиентного спуска (один из самых распространённых вариантов обучения) близки такой штуке как kernel machines — одной из техник машинного обучения «предыдущего поколения».

У kernel machines есть несколько интересных особенностей:

  • Техника хорошо проработана математически.
  • Требует значительно менее дорогих вычислений.
  • Вместо «выделения» признаков «напрямую» использует обучающую выборку.

Из этого может неслучиться несколько интересных вещей.

  • «Готовая» математика упростит сети и/или улучшит их результат и/или ускорит/удешевит обучение.
  • Область возможностей сетей очертится более чётко — окажется, что они не выделяют никакие новые признаки, а используют только «запутанные» данные из обучающей выборки.

Оба варианта выглядят довольно интересно.

Обсуждение на ycombinator.com

Процедурную генерацию в массы!

Google выпустил экспериментальную нейронку, которая создаёт изображения новых существ «по чертежу». «Пример чертежа» на заглавной картинке.

То есть на генерации аватарок развитие нейронок не остановилось и даже не запнулось. Грядут большие перемены, как минимум, на рынке мультимедиа.

Но одна вещь меня пугает: что дозволено Юпитеру, не дозволено быку. Нейронки и процедурная генерация способны очень на многое, но насколько эти технологии будут доступны рядовым разработчикам?

Читать далее

Русскоязычная GPT-2+ от Сбера vs «Сказка»

Сбер выпусти свой генератор текста, основанный на GPT-2. Я попробовал скормить ему сказочные описания действий героев. Проверял на jupiter note, опубликованной в вебе, так что вы тоже можете с ней поиграть.

Обновлено: говорят, использовали на GPT-3, а GPT-2 с доработками.

Получилось средненько — не на тех текстах всё-таки нейронка обучалась. Вот если бы ей фэнтези скормили… Текст получается осмысленный, но чувствуется явная нехватка контекста.

Самые интересные примеры под катом.

Читать далее