Эссе о разработке игр, мышлении и книгах

Считаем бизнес-план для игры в Steam

Заработать миллионы проще простого, сейчас расскажу как :-D

Заработать миллионы проще простого, сейчас расскажу как :-D

Когда выкладывал отчётную презентацию (слайды) по World Builders 2023 (мои посты, сайт), обещал рассказать как делал roadmap и финансовую модель для игры. Выполняю обещание.

К концу поста у нас на руках будут:

  • Краткая стратегия нашей компании: что мы делаем, как, зачем и почему.
  • Табличка наших маяков — успешных игр, которые примерно похожи на то, что мы хотим сделать. Похожи как по геймплею, так и по размеру команды, бюджету, etc.
  • Состав команды, которую нам надо собрать.
  • Roadmap — план разработки нашей игры.
  • Зачатки маркетинговой стратегии.
  • Финансовая модель — сколько мы будем тратить, сколько зарабатывать.
  • Огромное количество моих оговорок по всему посту.
  • Шутки и прибаутки.

Все итоговые документы вы можете найти тут.

Далее

Реализация Generative Adversarial Network

В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.

По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.

Ноутбук с реализацией GAN и комментариями.

Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.

Краткая суть:

  • Тренируются две сети: generator & discriminator.
  • Генератор учится создавать картинки из шума.
  • Дискриминатор учится отличать поддельные картинки от настоящих.
  • Ошибка дискриминатора определяется качеством предсказания фейковости изображения.
  • Ошибка генератора определяется качеством обмана дискриминатора.

Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.

Kaggle: Digit Recognizer (MNIST) точность 0.99585

Примеры цифр из набора MNIST.

Примеры цифр из набора MNIST.

Продолжаю путешествие по занимательным землям Deep Learning.

В прошлый раз я учился заводить deep learning на локальной машине и делал совсем детскую, искусственную и неспецифическую для DL задачу.

В этот раз решил попробовать что-то более диплёрничное — научиться решать задачи на Kaggle. Есть предположение, что Kaggle — самый простой и интересный способ учить DL.

На этом сервисе есть задачи для новичков, одну такую — Digit Recognizer — я выбрал для тренировки. Соревнование по распознаванию рукописных цифр из набора MNIST. Этот набор должны были встречать даже люди далёкие от ML.

Notebook с решением и комментариями опубликован на github.

На момент отправки решение занимало 467 место из ~7000. На мой взгляд неплохой результат, учитывая, что первые мест 150 занимают читерские решения. MNIST — общедоступный набор данных, их можно скачать вне kaggle и залить в качестве решения готовые ответы, или переобучить сеть на полном наборе.

Далее