Эссе о разработке игр, мышлении и книгах

Погружение в глубокое обучение: Реализация Generative Adversarial Network

Мои заметки о погружении в глубокое обучение:

В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.

По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.

Ноутбук с реализацией GAN и комментариями.

Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.

Краткая суть:

  • Тренируются две сети: generator & discriminator.
  • Генератор учится создавать картинки из шума.
  • Дискриминатор учится отличать поддельные картинки от настоящих.
  • Ошибка дискриминатора определяется качеством предсказания фейковости изображения.
  • Ошибка генератора определяется качеством обмана дискриминатора.

Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.