Эссе о разработке игр, мышлении и книгах

Топовые LLM фреймворки могут быть не так надёжны, как вы думаете

Месяц назад решил добавить поддержку Gemini в Feeds Fun и под это дело изучал топовые LLM фреймворки — писать свой велосипед не хотелось.

В итоге нашёл стыдный баг в интеграции с Gemini в LLamaIndex. Судя по коду, он есть и в Haystack и в плагине для LangChain. А корень проблемы вообще в SDK Google для Python.

При инициализации нового клиента для Gemini код фреймворка перетирает/подменяет API ключи во всех клиентах, созданных до этого. Потому что API ключ, по-умолчанию, хранится в синглетоне.

Смерти подобно, если у вас multi-tenant приложение, и незаметно во всех остальных случаях. Multi-tenant — это когда ваше приложение работает с несколькими пользователями.

Например, в моём случае, в Feeds Fun пользователь может ввести свой API ключ, чтобы улучшить качество сервиса. Представьте какой забавный казус мог бы случиться: пользователь ввёл API ключ для обработки своих рассылок, а потратил токенов (заплатил) за всех пользователей сервиса.

Репортил только в LLamaIndex как security issue и уже 3 недели ноль реакции, для Haystack и LangChain лень воспроизводить. Так что это ваш шанс зарепортить багу в топовый репозиторий. Под катом будет вся инфа, воспроизвести не сложно.

Ошибка примечательна многим:

  1. Оценка критичности ошибки очень зависит от вкусовщины, опыта и контекста. Для меня, в проектах в которых я работал, — это критическая ошибка безопасности. Но, похоже, для большинства актуальных проектов, которые используют LLM, это вообще не принципиально. Что навевает некоторые мысли о мейнстрим около-LLM разработках.
  2. Это хороший индикатор низкого уровня контроля качества кода: код ревью, тестов — всех процессов. Всё-таки это интеграция с одним из топовых провайдеров API, найти проблему можно было кучей разных способов, но ни один не сработал.
  3. Это хорошая иллюстрация порочного подхода к разработке: «копипастим из туториала и льём на прод». Чтобы допустить эту ошибку нужно было проигнорить одновременно и базовую архитектуру твоего проекта и логику вызова кода, который ты копипастишь.

В итоге я забил на эти фреймворки и впилил свой костыль, благо HTTP API для Gemini есть.

Мой вывод из этого безобразия такой: доверять коду, который под капотом у современных LLM фреймворков нельзя. Надо перепроверять, вычитывать. То, что у них написано «production ready», не значит, что они действительно production ready.

Далее расскажу подробнее про сам баг.

Далее

Блог переехал на новый движок

Документальная журналистика: процесс перевозки контента на новый движок (c) ChatGPT

Документальная журналистика: процесс перевозки контента на новый движок (c) ChatGPT

Зима не успела закончиться, а я уже выполнил один из планов на год :-D

Причём не только перевёл блог на новый движок, но и сам этот движок написал и заопенсорсил: https://github.com/Tiendil/brigid

Что будет интересным для вас.

На индексной странице появился крутой фильтр постов по тегам. Вдохновлённый feeds.fun. Попробуйте поиграть с ним. Пока он доступен только для больших экранов — на мобилках не увидите — поправлю в будущем.

Посты должны стать читаемее, сайт — удобнее, красивее, быстрее.

Никаких cookies и корпоративных трекеров. Как трекер пока использую облачный plausible.io позже подниму свой инстанс.

Мультиязычность. Большинство новых постов будут доступны на русском и английском. Постепенно буду переводить интересные старые посты.

Исходники постов также открыты и лежат в отдельном репозитории: https://github.com/Tiendil/tiendil-org-content

Далее

Open source сервисы аутентификации

Потребовалось сделать регистрацию/логин пользователей для пет-проекта. А я это жуть как не люблю, прямо до скрежета в зубах. Поэтому решил поискать что-нибудь совсем готовое, чтобы минимум кода писать и можно было однотипно использовать в будущих проектах.

В итоге нашёл несколько интересных сервисов. Забавно, при узкой предметной области они заметно отличаются друг от друга.

Далее будет моё предвзятое и не особо компетентное мнение. Сугубо для закрепления в истории результатов раскопок.

Есть три проекта, которые вызвали мой интерес:

Фич у каждого сервиса много, даже не буду пытаться перечислять. Учтите, у каждого из них уникальные их наборы. Надо проверять, что выбранный сервис умеет всё что надо и как надо.

Далее

Два примера overengineering из FastAPI

DALL-E: Vrubel painting: "demon of overengineering in software development"

DALL-E: Vrubel painting: "demon of overengineering in software development"

Решил по-хитрому использовать contextvars в FastAPI и с первого захода налетел на странные архитектурные решения, которые, откровенно говоря, ограничивают и мешают делать красиво :-(

Далее

Как завалить собес у меня

Мы в Palta активно ищем сотрудников, поэтому я собеседую людей уровня senior & lead. А до этого в Melsoft доводилось мидлов и выше собеседовать. Накопился ряд наблюдений, которыми хочется поделиться.

Сначала хотел написать на глобальную тему, вроде разницы между junior, middle, senior & lead, но дело шло туго, поэтому сделаю проще.

Расскажу о косяках, которые с большой вероятностью помешают пройти собеседование конкретно у меня.

По отдельности каждая проблема — не приговор, но точно снижает шансы на положительное впечатление.

Для каждой проблемы я написал упрощённый пример диалога. Надеюсь получилось наглядно. Главное помните, что вопросы и ответы там придуманы специально для иллюстрации проблемы, а не взяты из реальных собесов. По большей части :-)

Далее