В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.
По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.
Ноутбук с реализацией GAN и комментариями.
Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.
Краткая суть:
Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.
Продолжаю путешествие по занимательным землям Deep Learning.
В прошлый раз я учился заводить deep learning на локальной машине и делал совсем детскую, искусственную и неспецифическую для DL задачу.
В этот раз решил попробовать что-то более диплёрничное — научиться решать задачи на Kaggle. Есть предположение, что Kaggle — самый простой и интересный способ учить DL.
На этом сервисе есть задачи для новичков, одну такую — Digit Recognizer — я выбрал для тренировки. Соревнование по распознаванию рукописных цифр из набора MNIST. Этот набор должны были встречать даже люди далёкие от ML.
Notebook с решением и комментариями опубликован на github.
На момент отправки решение занимало 467 место из ~7000. На мой взгляд неплохой результат, учитывая, что первые мест 150 занимают читерские решения. MNIST — общедоступный набор данных, их можно скачать вне kaggle и залить в качестве решения готовые ответы, или переобучить сеть на полном наборе.
Продолжаю разбираться с Deep Learning.
Решил попробовать его на практике: сам придумал лабу, сам сделал, сам себя похвалил.
Целью было построить простейшую, но более-менее полную цепочку обучения модели с помощью Keras+TensorFlow и запустить её на своей машине.
Публикую notebook с выполненной лабой, комментариями о базовых штуках, костылях и нюансах. Надеюсь, будет полезна новичкам. Может быть меня даже поругает кто-нибудь из опытных датасаентистов.
А в этом посте покритикую инфраструктуру всего этого.
Недавно мне на глаза попалась пара платных курсов. Один по Python (с примечательной программой), другой по саморазвитию. Оба хорошо сделаны с точки зрения маркетинга, я бы сказал на высоте. И оба, скорее всего, разводилово. Как минимум на уровне взятия денег за то, что можно получить бесплатно.
В тему будет вспомнить и обилие курсов тематики «войти в IT», большинство которых не даёт никакой гарантии.
Подобные курсы пиарятся по лучшим методичкам, из-за чего сложно объяснить неподготовленному человеку в чём подвох. А иногда надо. Поэтому я попробую зайти с другой стороны.
Вместо копания в конкретных курсах, поставлю под сомнение саму концепцию передачи знания за деньги.