Эссе о разработке игр, мышлении и книгах

Топовые LLM фреймворки могут быть не так надёжны, как вы думаете

Месяц назад решил добавить поддержку Gemini в Feeds Fun и под это дело изучал топовые LLM фреймворки — писать свой велосипед не хотелось.

В итоге нашёл стыдный баг в интеграции с Gemini в LLamaIndex. Судя по коду, он есть и в Haystack и в плагине для LangChain. А корень проблемы вообще в SDK Google для Python.

При инициализации нового клиента для Gemini код фреймворка перетирает/подменяет API ключи во всех клиентах, созданных до этого. Потому что API ключ, по-умолчанию, хранится в синглетоне.

Смерти подобно, если у вас multi-tenant приложение, и незаметно во всех остальных случаях. Multi-tenant — это когда ваше приложение работает с несколькими пользователями.

Например, в моём случае, в Feeds Fun пользователь может ввести свой API ключ, чтобы улучшить качество сервиса. Представьте какой забавный казус мог бы случиться: пользователь ввёл API ключ для обработки своих рассылок, а потратил токенов (заплатил) за всех пользователей сервиса.

Репортил только в LLamaIndex как security issue и уже 3 недели ноль реакции, для Haystack и LangChain лень воспроизводить. Так что это ваш шанс зарепортить багу в топовый репозиторий. Под катом будет вся инфа, воспроизвести не сложно.

Ошибка примечательна многим:

  1. Оценка критичности ошибки очень зависит от вкусовщины, опыта и контекста. Для меня, в проектах в которых я работал, — это критическая ошибка безопасности. Но, похоже, для большинства актуальных проектов, которые используют LLM, это вообще не принципиально. Что навевает некоторые мысли о мейнстрим около-LLM разработках.
  2. Это хороший индикатор низкого уровня контроля качества кода: код ревью, тестов — всех процессов. Всё-таки это интеграция с одним из топовых провайдеров API, найти проблему можно было кучей разных способов, но ни один не сработал.
  3. Это хорошая иллюстрация порочного подхода к разработке: «копипастим из туториала и льём на прод». Чтобы допустить эту ошибку нужно было проигнорить одновременно и базовую архитектуру твоего проекта и логику вызова кода, который ты копипастишь.

В итоге я забил на эти фреймворки и впилил свой костыль, благо HTTP API для Gemini есть.

Мой вывод из этого безобразия такой: доверять коду, который под капотом у современных LLM фреймворков нельзя. Надо перепроверять, вычитывать. То, что у них написано «production ready», не значит, что они действительно production ready.

Далее расскажу подробнее про сам баг.

Далее

Feeds Fun — читалка новостей с тегами и ChatGPT

Выглядит неприглядно, но это временно.

Выглядит неприглядно, но это временно.

Задержался с постом, а между тем читалка уже работает и экономит мне 4-8 часов в неделю.

Для нетерпеливых и ленивых:

  • Репозиторий: github.com/tiendil/feeds.fun
  • Сайт: feeds.fun — заходите, подписывайтесь на подготовленные коллекции новостей, экспериментируйте.

Суть:

  • Читалка автоматически определяет теги для каждой новости. Тут очень кстати пришлась ChatGPT.
  • Вы создаёте правила в духе elon-musk & twitter => score -100500, procedural-content-generation & hentai => score +13.
  • В интерфейсе сортируете новости по интересности и читаете только самые-самые именно для вас.

Если есть просьбы по фичам — создавайте issue, постараюсь воплощать. Хочется, чтобы штука пошла в народ.

Далее

Реализация Generative Adversarial Network

В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.

По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.

Ноутбук с реализацией GAN и комментариями.

Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.

Краткая суть:

  • Тренируются две сети: generator & discriminator.
  • Генератор учится создавать картинки из шума.
  • Дискриминатор учится отличать поддельные картинки от настоящих.
  • Ошибка дискриминатора определяется качеством предсказания фейковости изображения.
  • Ошибка генератора определяется качеством обмана дискриминатора.

Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.

Kaggle: Digit Recognizer (MNIST) точность 0.99585

Примеры цифр из набора MNIST.

Примеры цифр из набора MNIST.

Продолжаю путешествие по занимательным землям Deep Learning.

В прошлый раз я учился заводить deep learning на локальной машине и делал совсем детскую, искусственную и неспецифическую для DL задачу.

В этот раз решил попробовать что-то более диплёрничное — научиться решать задачи на Kaggle. Есть предположение, что Kaggle — самый простой и интересный способ учить DL.

На этом сервисе есть задачи для новичков, одну такую — Digit Recognizer — я выбрал для тренировки. Соревнование по распознаванию рукописных цифр из набора MNIST. Этот набор должны были встречать даже люди далёкие от ML.

Notebook с решением и комментариями опубликован на github.

На момент отправки решение занимало 467 место из ~7000. На мой взгляд неплохой результат, учитывая, что первые мест 150 занимают читерские решения. MNIST — общедоступный набор данных, их можно скачать вне kaggle и залить в качестве решения готовые ответы, или переобучить сеть на полном наборе.

Далее

Просто о связи линейной алгебры и нейронных сетей

Нашёл серию статей с детальным рассказом о принципах работы нейронных сетей. Начиная от векторного произведения, через матрицы к персептрону и нейронам, Понятно, доступно и последовательно — без скачков через куски теории. С примерами на Python.

  1. Linear Algebra
  2. Inner Product Spaces
  3. The Perceptron, and All the Things it Can’t Perceive
  4. Neural Networks and the Backpropagation Algorithm

Остальной блог тоже интересен. У автора много вводных статей на математические и программистские темы.