Nearly a month ago, I decided to add Gemini support to Feeds Fun and did some research on top LLM frameworks — I didn't want to write my own bicycle.
As a result, I found an embarrassing bug (in my opinion, of course) in the integration with Gemini in LLamaIndex. Judging by the code, it is also present in Haystack and in the plugin for LangChain. And the root of the problem is in the Google SDK for Python.
When initializing a new client for Gemini, the framework code overwrites/replaces API keys in all clients created before. Because the API key, by default, is stored in a singleton.
It is death-like, if you have a multi-tenant application, and unnoticeable in all other cases. Multi-tenant means that your application works with multiple users.
For example, in my case, in Feeds Fun, a user can enter their API key to improve the quality of the service. Imagine what a funny situation could happen: a user entered an API key to process their news but spent tokens (paid for) for all service users.
I reported this bug only in LLamaIndex as a security issue, and there has been no reaction for 3 weeks. I'm too lazy to reproduce and report for Haystack and LangChain. So this is your chance to report a bug to a top repository. All the info will be below, reproducing is not difficult.
This error is notable for many reasons:
Ultimately, I gave up on these frameworks and implemented my own client over HTTP API.
My conclusion from this mess is: you can't trust the code under the hood of modern LLM frameworks. You need to double-check and proofread it. Just because they state that they are "production-ready" doesn't mean they are really production-ready.
Let me tell you more about the bug.
This is a translation of a post from 2020
This is a step-by-step guide to generating dungeons in Python. If you are not a programmer, you may be interested in reading how to design a dungeon [ru].
I spent a few evenings testing the idea of generating space bases.. The space base didn't work out, but the result looks like a good dungeon. Since I went from simple to complex and didn't use rocket science, I converted the code into a tutorial on generating dungeons in Python.
By the end of this tutorial, we will have a dungeon generator with the following features:
The entire code can be found on github.
There won't be any code in the post — all the approaches used can be easily described in words. At least, I think so.
Each development stage has a corresponding tag in the repository, containing the code at the end of the stage.
The aim of this tutorial is not only to teach how to generate dungeons but to demonstrate that seemingly complex tasks can be simple when properly broken down into subtasks.