Пару месяцев назад начал делать заметки на тему поста с намерением не спеша накопить к лету и опубликовать. А тут некоторые прогнозы сбываться начинают :-D Поэтому закину что есть, без сроков и гарантий.
База для прогнозов:
Поскольку даты для для прогнозов не указываю, можно считать их скорее трендами, направлениями эволюционного давления, чем конкретными событиями.
В завершение разбирательства с Deep Learning решил посмотреть что-нибудь более интересное и ориентированное на генерацию контента — реализовать GAN.
По правде говоря, большую часть времени с GAN (и Autoencoder) я экспериментировал на спрайтах карты Сказки. Ожидаемо, на таком мизере обучающих данных ничего интересного не получилось. Хотя польза и была. Поэтому для поста я подготовил отдельный notebook с более наглядными результатами — генерацией обуви по набору данных Fashion MNIST.
Ноутбук с реализацией GAN и комментариями.
Про архитектуру GAN лучше почитать в вики, интернетах или моём ноутбуке.
Краткая суть:
Если правильно подобрать топологии сетей и параметры обучения, то в итоге генератор научается создавать картинки неотличимые от оригинальных. ??????. Profit.
Перед началом разбирательства с темой собрал для себя список курсов, которые могут быть интересны.
Публикую, чтобы не пропадал зря.
Только ссылки. Свои комментарии вырезал — в исходном виде они никому кроме меня не помогут :-)
Продолжаю путешествие по занимательным землям Deep Learning.
В прошлый раз я учился заводить deep learning на локальной машине и делал совсем детскую, искусственную и неспецифическую для DL задачу.
В этот раз решил попробовать что-то более диплёрничное — научиться решать задачи на Kaggle. Есть предположение, что Kaggle — самый простой и интересный способ учить DL.
На этом сервисе есть задачи для новичков, одну такую — Digit Recognizer — я выбрал для тренировки. Соревнование по распознаванию рукописных цифр из набора MNIST. Этот набор должны были встречать даже люди далёкие от ML.
Notebook с решением и комментариями опубликован на github.
На момент отправки решение занимало 467 место из ~7000. На мой взгляд неплохой результат, учитывая, что первые мест 150 занимают читерские решения. MNIST — общедоступный набор данных, их можно скачать вне kaggle и залить в качестве решения готовые ответы, или переобучить сеть на полном наборе.
Нашёл серию статей с детальным рассказом о принципах работы нейронных сетей. Начиная от векторного произведения, через матрицы к персептрону и нейронам, Понятно, доступно и последовательно — без скачков через куски теории. С примерами на Python.
Остальной блог тоже интересен. У автора много вводных статей на математические и программистские темы.