Нашёл серию статей с детальным рассказом о принципах работы нейронных сетей. Начиная от векторного произведения, через матрицы к персептрону и нейронам, Понятно, доступно и последовательно — без скачков через куски теории. С примерами на Python.
Остальной блог тоже интересен. У автора много вводных статей на математические и программистские темы.
Продолжаю разбираться с Deep Learning.
Решил попробовать его на практике: сам придумал лабу, сам сделал, сам себя похвалил.
Целью было построить простейшую, но более-менее полную цепочку обучения модели с помощью Keras+TensorFlow и запустить её на своей машине.
Публикую notebook с выполненной лабой, комментариями о базовых штуках, костылях и нюансах. Надеюсь, будет полезна новичкам. Может быть меня даже поругает кто-нибудь из опытных датасаентистов.
А в этом посте покритикую инфраструктуру всего этого.
Если вы хотите от жизни большего, не можете сжульничать и родились в СНГ.
Давно хотел написать пару соображений на тему, а раз сейчас идёт вступительная кампания, то и напишу.
Написанное я считаю справедливым для людей, которые хотят расти над собой: стать хорошим специалистом, создать что-то заметное, принести пользу обществу.
Этот текст мало полезен для тех, кому родители уже подготовили тёплое место, кто косит от армии, кто идёт учится «потому что надо» и так далее.
Строго субъективно, конечно.
Отмучавшись с матаном, я решил, что времени на основательное разбирательство со всем машинным обучением уйдёт слишком много — надо срезать углы.
Поэтому следующей целью выбрал курс MIT 6.S191: Introduction to Deep Learning.
Потому что MIT и по темам лекций видно широкое покрытие темы.
Курсом очень доволен.
Чёрт дёрнул вспоминать вышку. Я планирую немного забатанить машинное обучение, но сперва решил вспомнить, чему меня в университетах учили. Тем более, что математического анализа мне иногда не хватает.
Поэтому я нагуглил на Stepik курс с пятью звёздами сразу в двух частях (1, 2) за авторством Александра Храброва.
Первую часть я прошёл за 6 полных дней на 100%. Вторую, с перерывами, дней за 10 на 87%: стало жалко времени и сил. График в заголовке намекает на причину :-)
Попутно накопил заметок о курсе, о том как «правильно» учить математике. И как ей учить не надо.
Само собой, всё с моей колокольни.