Эссе о разработке игр, мышлении и книгах

Просто о связи линейной алгебры и нейронных сетей

Нашёл серию статей с детальным рассказом о принципах работы нейронных сетей. Начиная от векторного произведения, через матрицы к персептрону и нейронам, Понятно, доступно и последовательно — без скачков через куски теории. С примерами на Python.

  1. Linear Algebra
  2. Inner Product Spaces
  3. The Perceptron, and All the Things it Can’t Perceive
  4. Neural Networks and the Backpropagation Algorithm

Остальной блог тоже интересен. У автора много вводных статей на математические и программистские темы.

Нельзя просто так взять и запустить Deep Learning

Очень известный мем с Боромиром.

Продолжаю разбираться с Deep Learning.

Решил попробовать его на практике: сам придумал лабу, сам сделал, сам себя похвалил.

Целью было построить простейшую, но более-менее полную цепочку обучения модели с помощью Keras+TensorFlow и запустить её на своей машине.

Публикую notebook с выполненной лабой, комментариями о базовых штуках, костылях и нюансах. Надеюсь, будет полезна новичкам. Может быть меня даже поругает кто-нибудь из опытных датасаентистов.

А в этом посте покритикую инфраструктуру всего этого.

Далее

Как выбрать ВУЗ и специальность

Если вы хотите от жизни большего, не можете сжульничать и родились в СНГ.

Давно хотел написать пару соображений на тему, а раз сейчас идёт вступительная кампания, то и напишу.

Написанное я считаю справедливым для людей, которые хотят расти над собой: стать хорошим специалистом, создать что-то заметное, принести пользу обществу.

Этот текст мало полезен для тех, кому родители уже подготовили тёплое место, кто косит от армии, кто идёт учится «потому что надо» и так далее.

Строго субъективно, конечно.

Далее

MIT 6.S191: галопом по Deep Learning

Отмучавшись с матаном, я решил, что времени на основательное разбирательство со всем машинным обучением уйдёт слишком много — надо срезать углы.

Поэтому следующей целью выбрал курс MIT 6.S191: Introduction to Deep Learning.

Потому что MIT и по темам лекций видно широкое покрытие темы.

Курсом очень доволен.

Далее

Как учить и не учить математике

Количество успешных решений и процент успешных попыток отправки решений задач в курсе.

Количество успешных решений и процент успешных попыток отправки решений задач в курсе.

Чёрт дёрнул вспоминать вышку. Я планирую немного забатанить машинное обучение, но сперва решил вспомнить, чему меня в университетах учили. Тем более, что математического анализа мне иногда не хватает.

Поэтому я нагуглил на Stepik курс с пятью звёздами сразу в двух частях (1, 2) за авторством Александра Храброва.

Первую часть я прошёл за 6 полных дней на 100%. Вторую, с перерывами, дней за 10 на 87%: стало жалко времени и сил. График в заголовке намекает на причину :-)

Попутно накопил заметок о курсе, о том как «правильно» учить математике. И как ей учить не надо.

Само собой, всё с моей колокольни.

Далее